Class/	Centre Number/	Name
Index Number	'O' Level Index Number	
/	1	

新加坡海星中学

MARIS STELLA HIGH SCHOOL PRELIMINARY EXAMINATION SECONDARY FOUR

CHEMISTRY

Paper 2

6092/02 22 August 2025 1 hour 45 minutes

Candidates answer on the Question Paper. No additional materials are required.

READ THESE INSTRUCTIONS FIRST

Write your class, index number, Centre number, O level index number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer **one** question.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page **22**.

The use of an approved scientific calculator is expected, where appropriate.

For E	xaminer's Use	
Section A	70	
Section B	10	
Total	80	

Section A

Answer **all** questions in this section in the spaces provided.

1 The structures of some carbon-containing substances, **A**, **B**, **C**, **D**, **E** and **F** are shown in Fig 1.1.

Fig. 1.1

(a) Use the letters A, B, C, D, E and F to answer the following questions.

Each letter may be used once, more than once or not at all.

(1)	Which substance is a saturated hydrocarbon?	
		[1]
(ii)	Which substance has a giant molecular structure?	
		[1]
(iii)	Which substance is a product of respiration?	
		[1]
(iv)	Which substance is in the same homologous series as ethene?	
		[1]
(v)	Which substance is found in limestone?	
		[1

(b)	Explain why substance B in the atmosphere is increasing and why planting more trees is not a long-term solution to the increase in the amount of B .
	[2]
	[Total: 7]

Table 2.1 below shows the melting and boiling points of lithium and lithiu Table 2.1 melting point / °C boiling point / °C lithium 180.5 1342 lithium chloride 605.0 1382
Table 2.1 below shows the melting and boiling points of lithium and lithiu Table 2.1 melting point / °C boiling point / °C lithium 180.5 1342
Table 2.1 below shows the melting and boiling points of lithium and lithiu Table 2.1 melting point / °C boiling point / °C lithium 180.5 1342
Table 2.1 below shows the melting and boiling points of lithium and lithiu Table 2.1 melting point / °C boiling point / °C lithium 180.5 1342
Table 2.1 below shows the melting and boiling points of lithium and lithium Table 2.1 melting point / °C boiling point / °C lithium 180.5 1342
Table 2.1 melting point / °C boiling point / °C lithium 180.5 1342
melting point / °C boiling point / °C lithium 180.5 1342
lithium 180.5 1342
lithium chloride 605.0 1382
Two students, A and B , are comparing the properties of lithium and lith at room temperature. Student A states that both lithium and lithium conduct electricity, but Student B states that only lithium can conduct electricity.
State whether Student A , Student B , or neither student is correct. E answer.
State whether Student A, Student B, or neither student is correct.
State whether Student A, Student B, or neither student is correct.
State whether Student A, Student B, or neither student is correct.
State whether Student A, Student B, or neither student is correct.

d)	Students A and B then went on to discuss the bonding in another substance, calcium fluoride. Explain, in terms of electrons, how the bonds in calcium fluoride are formed.
	[2]
	[Total: 9]

3	Chlorine dioxide, ClO2, was the first oxide of chlorine to be discovered. Although unstable
	as a liquid or gas, it is now produced on a very large scale for the bleaching of wood pulp
	and water treatment.

Chlorine dioxide has a complex bonding structure. The chlorine atom in the molecule has an unpaired electron, which is not involved in bonding, contributing to its reactivity.

The structure of a chlorine dioxide molecule can be represented as shown.

$$O = Cl = O$$

(a)	Draw	а	ʻdot	&	cross'	diagram	to	show	the	bonding	in	а	chlorine	dioxide	molecule.
	Show	ou	ter sl	nel	l electro	ons only.									

[2]

(b) Chlorine dioxide was first obtained by scientist and inventor, Humphry Davy. It was formed by the hazardous disproportionation reaction of chloric acid, HClO₃.

$$3HClO_3 \rightarrow 2ClO_2 + HClO_4 + H_2O$$

Disproportionation is a type of redox reaction in which the same element is both oxidised and reduced.

Which element in the reaction has undergone disproportionation? Explain your answer using oxidation states.

.....

.....[2]

(c) Chlorine dioxide can also be produced by reacting sodium chlorate(III), NaClO₂ with chlorine. The other product is sodium chloride.

(i) Write an equation for the reaction.

.....[1]

(ii) Which is the oxidising agent? Explain your answer.

.....[2]

[Total: 7]

4	Sulluric	acid a	and	maionic	acid are bo	oth air	basic ac	JIU	s.						
	Malonic	acid	is a	a white	crystalline	solid	which	is	soluble	in	water.	It melts	at	135	°C

The structural formula of malonic acid is given below.

HOO	\sim	٠Ц	\sim	\cap
ПОО	-c	,⊓2—	$\cup \cup$	\cup \sqcap

(a)	(i)	Write the molecular formula of malonic acid.
		[1]
	(ii)	When malonic acid is thermally decomposed, carbon dioxide and a simpler carboxylic acid are formed. Deduce the name and formula of this acid.
		[2]
	(iii)	Name the product when the carboxylic acid in (a)(ii) is mixed with ethanol and heated in the presence of concentrated sulfuric acid.
		[1]
	(iv)	Draw the structural formula of the product formed in (a)(iii).
		[1]
(b)		est why a solution of malonic acid, of concentration 0.2 mol/dm³, has a higher pH sulfuric acid of the same concentration.
		[1]
		[Total: 6]

Aqueous hydrogen peroxide is often used in households as a bleaching agent as well as a disinfectant among other uses.

At room temperature, aqueous hydrogen peroxide decomposes very slowly to form water and oxygen. The decomposition of hydrogen peroxide can be represented by the equation below.

(a)	Explain in terms of bond making and bond breaking why this reaction is exotherm	ic.
		LO.

(b) The decomposition of hydrogen peroxide is speeded up by adding powdered manganese(${
m IV}$) oxide.

An experiment was carried out with three samples of hydrogen peroxide placed in conical flasks labelled **P**, **Q** and **R**. An equal mass of powdered manganese(IV) oxide was added to each conical flask. The mass of the conical flasks and their contents were measured at regular time intervals, and a graph of mass was plotted against time.

The results are shown in Fig. 5.1.

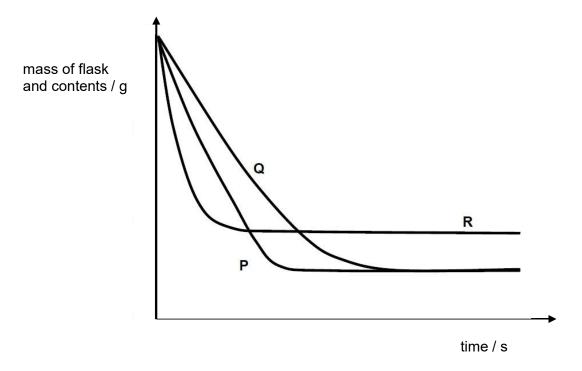


Fig. 5.1

(i)

Given that conical flask ${\bf P}$ contained 50 cm³ of 2.0 mol/dm³ of hydrogen peroxide and conical flask ${\bf Q}$ contained 80 cm³ of hydrogen peroxide, calculate the concentration of hydrogen peroxide in conical flask ${\bf Q}$.

	[2]
(ii)	Suggest a suitable volume and concentration of hydrogen peroxide in conical flask ${\bf R}.$
	Volume of hydrogen peroxide
	Concentration of hydrogen peroxide[2]
(iii)	Suggest another way to speed up the decomposition further, without the use of a catalyst or varying the concentration. Explain your answer in terms of collision theory.
	[3]
	[Total: 9]

Fig. 6.1 shows the electrolysis of a concentrated solution of sodium chloride in the laboratory.

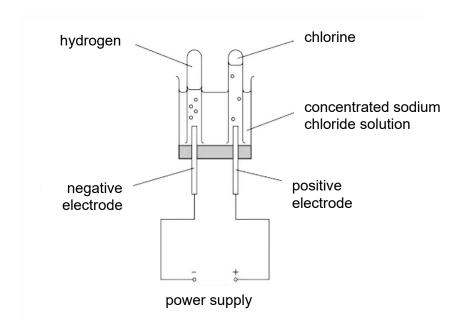


Fig. 6.1

Explain, with the use of ionic equations, why the volume of chlorine collected should be the same as the volume of hydrogen collected.	(i)	(a)
[2]		
Suggest why the volume of chlorine collected is always less than the volume of hydrogen collected.	(ii)	
F11*		

(b)	In the chemical industry, chlorine can be produced by the electrolysis of molten sodium chloride. The overall equation for this reaction is shown below. $2NaC\mathit{l}(I) \rightarrow 2Na(I) + C\mathit{l}_2(g)$
	Calculate the maximum volume, in dm³, of chlorine gas that can be obtained from 23.4 tonnes of molten sodium chloride.
	(1 tonne = 1000 kg)
	[3]
(c)	Nuclear submarines can stay underwater for months without needing to come to the surface.
	Oxygen for the crew to breathe is produced using an equipment called an automated electrolytic oxygen generator.
	Many people assume that seawater is used directly and electrolysed to produce oxygen.
	Explain why the assumption is incorrect and potentially hazardous, and how seawater can be processed to obtain oxygen.

[Total : 9]

7 Ethanol can be manufactured by two different methods. Table 7.1 gives some information about the two methods.

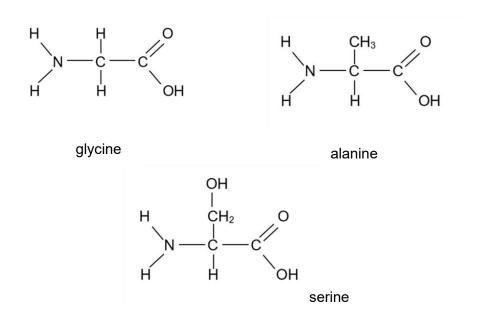
Table 7.1

	hydration of ethene	fermentation of glucose
raw material	crude oil	sugar cane
rate of reaction	fast	slow
purity of ethanol	pure	impure
operating temperature	300 °C	30 °C
operating pressure	60 – 70 atmospheres	1 atmospheres
catalyst	phosphoric acid	enzymes in yeast

Use the information given in Table 7.1 to discuss the advantages and disadvantages of these two methods.
[4]
[Total: 4]

8 (a) Researchers have found the presence of acrylamide in certain foods that were heated to temperature above 120 °C. Potato chips and french fries were found to contain high levels of acrylamide.

Acrylamide is thought to be harmful to human health and has the following structure.


$$H \subset C \subset C$$
 $CONH_2$

(i) Acrylamide readily polymerises to form poly(acrylamide). Draw the structure of poly(acrylamide).

[1]

(ii)	Acrylamide reacts with water to form acrylic acid and ammonium ions. Describe the test for ammonium ion.				
	[2]				

(b) A silk protein is made of many identical protein chains, which are made mainly from equal number of three amino acid monomers, glycine, alanine and serine.

One possible structure of the silk protein is shown below.

glycine

alanine

serine

(ii) Draw the structural formula of the repeat unit for the silk protein, containing the three amino acids.

		[1]
(c)	Outline two differences between the polymerisation of acrylamide in (a)(i) and amino acid monomers in (b)(i) .	the
		[2]

[Total: 7]

9 Principles of Chromatography

Chromatography makes use of the principle that components in a mixture when dissolved in a liquid or gas (mobile phase), will flow through another substance (stationary phase) at varying rates.

The rate of separation depends on how the components in the mixture interact with the stationary phase (their retention) and how soluble they are in the mobile phase.

Gas-Liquid Chromatography

Gas-liquid chromatography is used for analysing gases, volatile liquids and solids in their vapour form. This method uses a column with a non-volatile liquid as a stationary phase. An inert carrier gas such as helium or nitrogen moves the sample molecules through the stationary phase.

The sample is injected into the column and the vapour formed is carried through the stationary phase using the inert-gas mobile phase.

Retention time is the time taken for a component to travel through the column and it is recorded on a chromatogram. The position of the peaks shows the retention time of each component in the analysed sample.

The relative sizes of the peaks are related to how much each component is present in the mixture.

Fig. 9.1 shows the chromatogram of mixture **X**, with four components, **A**, **B**, **C** and **D**.

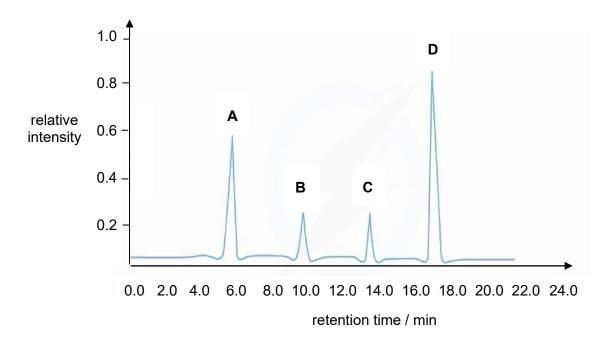


Fig. 9.1

Gas-liquid chromatography is often carried out with mass spectrometry to analyse each component as it exits the chromatography column. The molecular mass of each component in the mixture can be determined and matched with the time it took for the sample to move through the column.

Mass Spectrometry

Mass spectrometry is an analytical technique used to identify particles of different relative mass. It involves vaporising atoms or molecules and bombarding the vapourised particles with electrons to generate a beam of positive ions.

The number of different positive ion particles produced are then separated and counted. The resulting data from the detector is called a mass spectrum. It provides accurate data on the relative masses as well as the relative abundance of all the positive ions generated from individual atoms, molecules and fragments of molecules.

Each peak in the mass spectrum corresponds to a certain fragment with a particular mass to charge ratio (m/z) value. The peak with the highest m/z value is the molecular ion which corresponds to the molecular mass of the component. The molecular ion is the entire molecule that has lost one electron when bombarded with a beam of electrons.

Gas chromatography is carried out on an organic mixture. Two of the compounds in the mixture are hydrocarbons with similar retention times.

The mass spectra of the two compounds reveals that they have the same molecular formula but with subtle differences, indicating they are isomers. Both isomers are tested with aqueous bromine, which remains orange.

The mass spectrum of one of the isomers, **Y** is shown in Fig. 9.2.

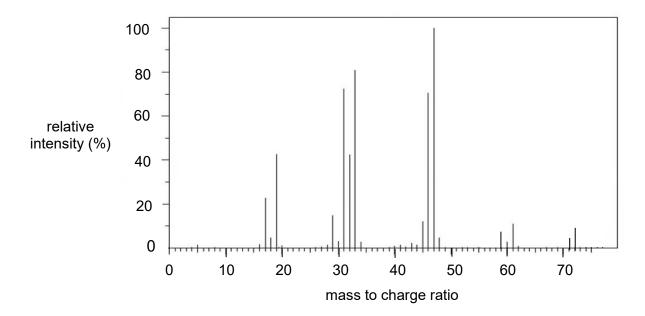


Fig. 9.2

(a) Complete Table 9.1 to show the stationary and mobile phase of paper chromatography.

Table 9.1

chromatography technique	stationary phase	mobile phase
gas-liquid chromatography	column with liquid	inert carrier gas
paper chromatography		

(b)	(i)	Which component in X is present in the greatest quantiy?
	(ii)	Which components in X were present in equal amounts?
	(iii)	Which component in X has the strongest interaction with the stationary phase?
		[1]
(c)	(i)	What is the molecular mass of isomer Y ?[1]
	(ii)	Deduce the molecular formula of Y . Explain your answer.
		[2]
	(iii)	Write a balanced equation for the reaction of Y with excess oxygen.
		[2]
	(iv)	Draw the full structural formula of two isomers of Y .

[2]

[2]

Section B

Answer **one** question from this section.

10 A student conducted three experiments to investigate the chemical properties of four different metals, **J**, **K**, **L** and **M**. The results of the three experiments are recorded as shown in Table 10.1.

Table 10.1

no	experiment	J	K	L	М
1	passing steam through the metal	a colourless gas is evolved	a colourless gas is evolved	no observable change	reacts very vigorously and a colourless gas is evolved
2	placing metal in silver nitrate	shiny silver crystals form on the surface of the metal	shiny silver crystals form on the surface of the metal	shiny silver crystals form on the surface of the metal	reacts very vigorously and a colourless gas is evolved
3	heating metal oxide with carbon at 1500°C	no observable change	formation of a silvery solid and a colourless gas is evolved	formation of a red-brown solid and a colourless gas is evolved	no observable change

(a)

(i)	Write down the order of increasing reactivity of J , K , L and M .
	[1]
(ii)	Explain the formation of the colourless gas when ${\bf M}$ is placed in the silver nitrate solution.
	[1]
(iii)	Suggest the identity of L . Write an ionic equation with state symbols for the reaction between L and silver nitrate solution.
	101

(b) The student conducted a fourth experiment to determine the position of hydrogen in the list of metals J, K, L and M in their order of reactivity.

Dry hydrogen gas was passed over heated oxides of the metals separately. The results are shown in Table 10.2.

Table 10.2

metal oxide	observation
oxide of metal J	remains white
oxide of metal K	white to yellow when hot, turns back to white when cold
oxide of metal L	colour turns from black to red-brown
oxide of metal M	remains white

(i)	Use the experimental results in Table 10.2 to explain the position of hydrogen.
	[3]
(ii)	Which one of the four metals $\bf J$, $\bf K$, $\bf L$ and $\bf M$, will cause iron to corrode faster when iron is in contact with it? Explain your answer.
	[3]
	[Total: 10]

11 Zamak is an alloy of zinc with magnesium, aluminium and copper. It is widely used to make diecast toys. Magnesium and aluminium are adjacent elements in the third Period of the Periodic Table. Zinc and copper are next to each other in the first set of transition elements.

Table 11.1 shows the densities of the four metals present in Zamak.

Table 11.1

metal	metal 1	metal 2	metal 3	metal 4		
density (g/cm³)	1.74	2.70	7.13	8.96		

(a)	Sugg	est the identities of metals 3 and 4 present in Zamak.
		[1]
(b)	(i)	When finely powdered Zamak is shaken with cold dilute hydrochloric acid, three of the metals dissolved and one remains as a solid residue.
	(ii)	Explain, in terms of collision theory, why finely powdered Zamak is used in the reaction.
		[2]
(c)	Using zinc.	g ideas of arrangement of atoms in Zamak alloy, explain why Zamak is harder than pure

(d) Mobile phones are made from many different substances. Table 11.2 shows the composition of substances used to make a typical mobile phone.

Table 11.2

substance	percentage by mass in a typical mobile phone (%)
plastics	56
ceramics	16
copper	15
iron	3
other materials	10

(i)	Plastic is a non-biodegradable material.
	Explain why being non-biodegradable is both an advantage and a disadvantage.
	[2]
(ii)	The iron used in a mobile phone must not rust.
	Suggest one way to prevent the iron from rusting and explain how this method of rust prevention works.
	[2]
	[Total: 10]

END OF PAPER

The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
Key						1 H hydrogen 1									,	2 He helium 4	
3	4			ı (atomic) n				_				5	6	7	8	9	10
Li	Ве	atomic symbol									В	С	N	0	F	Ne	
lithium	beryllium		name									boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		relative atomic mass									11	12	14	16	19	20
	12											13 A <i>l</i>	14 Si	15 P	16 S	17 C <i>l</i>	18
Na sodium	Mg magnesium											Α <i>ι</i> aluminium	silicon	phosphorus	sulfur	chlorine	Ar argon
23	24	3	4	5	6	7	8	9	10	11	12	27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium	tin 119	antimony 122	tellurium 128	iodine	xenon
	56	57–71	72	73		75	76	77	78	79	80	115 81	82		84	127	131
55 Co		lanthanoids			74 W	75 Do			Pt			T <i>l</i>	Pb	83		85	86 Dn
Cs caesium	Ba _{barium}	iaiiliaiioius	□ □ I hafnium	Ta tantalum	tungsten	Re rhenium	Os osmium	Ir iridium	Pl platinum	Au gold	Hg mercury	I <i>t</i> thallium	PD lead	Bi bismuth	Po polonium	At astatine	Rn radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	— poloriidiii		
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	F <i>l</i>	Mc	Lv	Ts	Og
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium		darmstadtium	_	_	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
				I				1	I					1		1	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
1 41		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
lantha	inolas	lanthanum	cerium	praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144		150	152	157	159	163	165	167	169	173	175	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103]
actin	oids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
331113133		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		_	232	231	238	_	_	_	_	_	_	_	_	_	_	_]

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$