2025 MSHS S4 Chemistry Prelim Paper 1 Answer

1	C	2	Α	3	Α	4	В	5	Α	6	D	7	D	8	С	9	В	10	С
11	Α	12	Α	13	D	14	С	15	С	16	В	17	Α	18	D	19	D	20	В
21	D	22	D	23	В	24	Α	25	С	26	D	27	С	28	С	29	В	30	Α
31	Α	32	D	33	Α	34	С	35	В	36	В	37	Α	38	С	39	С	40	D

Secondary Four Chemistry Preliminary Examination 2025 Mark Scheme

Paper 2

Section A

Qn No.	Answer	Mark
1ai	С	1
li	D	1
iii	В	1
iv	Е	1
V	A	1
b	The amount of B/carbon dioxide is increasing due to the complete combustion of fossil fuels in vehicles and industries.	1
	It takes years for trees to grow, so the absorption of carbon dioxide through photosynthesis is much slower than the release of carbon dioxide by complete combustion of fossil fuels.	1
	Total	7
2a	The ions in lithium are held together by electrostatic forces of attraction between positive lithium ions and the sea of delocalised electrons .	1
	The ions in lithium chloride are held together by the electrostatic forces of attraction between positively charged lithium ions and negative charged chloride ions.	1
b	The melting and boiling points of lithium chloride are higher than that of lithium.	1
	The electrostatic forces of attraction between oppositely charged ions in lithium chloride is stronger than the electrostatic forces of attraction between lithium ions and the delocalised electrons in lithium metal.	1
(c)	Both Student A and Student B are incorrect OR Student B is incorrect and Student A is partly correct.	1
	Lithium can conduct electricity in all states because of the mobile electrons . Lithium chloride can conduct electricity when molten / dissolved in water because the ions are mobile , but not in the solid state because the ions are held in fixed positions and are not mobile	1 1

Qn No.	Answer	Mark
d	One calcium atom (2, 8, 2) loses two electrons to two fluorine atoms, to form positively charged calcium ion (2, 8).	1
	Each fluorine atom (2, 7) gains one electron to form negatively charged fluoride ions (2,8).	1
	Total	9
3a	2 oxygen atoms and 1 chlorine with 4 shared pair of electrons	1
	chlorine atom with 1 lone pair and 1 unshared electrons	1
b	Chlorine has undergone disproportionation. Chlorine is oxidised because its oxidation state has increased from +5 in $HClO_3$ to +7 in $HClO_4$. Chlorine is also reduced because its oxidation state has decreased from +5 $HClO_3$ to +4 in ClO_2 .	1
ci	$2NaClO_2 + Cl_2 \rightarrow 2ClO_2 + 2NaCl$	1
ii	Chlorine is the oxidising agent. It oxidises sodium chlorate to chlorine dioxide / it causes the oxidation state of chlorine to increase from +3 in sodium chlorate to +4 in chlorine dioxide.	1
	Total	7
4ai	C ₃ H ₄ O ₄	1
ii	C ₂ H ₄ O ₂ / CH ₃ COOH Ethanoic acid	1 1
iii	Ethyl ethanoate	1
iv	H O H H 	1
bi	Malonic has a higher pH because it is a weak acid.	1
	Total	6

Qn No.	Answer	Mark
5a	More energy is released/given out in bond forming of 2 moles of water and 1 mole of oxygen than the energy absorbed/taken in bond breaking of 2 moles of hydrogen peroxide.	1
bi	Number of moles of H_2O_2 in $\mathbf{P} = 50 \div 1000 \times 2 = 0.1$ Number of moles of H_2O_2 in $\mathbf{Q} = 0.1$ Concentration of $Q = 0.1 \div 0.08$ = 1.25 mol/dm ³	1
	Or Concentration of Q = (50÷80) x 2 = 1.25 mol/dm ³	
ii	From graph, Loss in mass for conical flask R is less than that for conical flask P and Q . Hence number of moles of H_2O_2 in R should be less than 0.1 mole. Speed of reaction for conical flask R is greater than that for conical flask P and Q . Hence concentration of H_2O_2 in R should be greater than 2.0 mol/dm³. Any volume that gives number of moles less than 0.1 for the suggested concentration. e.g. 30 cm^3 Any concentration greater than 2.0 mol/dm^3 e.g. 2.5 mol/dm^3 No. of moles = $30 \times 2.5 = 0.75 \text{ mol}$	1
iii	Increase the temperature of H ₂ O ₂ solution. When the temperature raised, particles gain more energy and move faster. More particles have the minimum activation energy to react when they collide/more particles possess energy greater than or equal to activation energy. Hence, frequency of effective collisions increases and hence rate of reaction increases.	1 1 1
6ai	$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $2 C I(aq) \rightarrow C I_{2}(g) + 2e^{-}$	1
	For 2 moles of electrons that passed through the circuit, 1 mole of hydrogen and 1 mole of chlorine are formed. Equal number of moles of gases occupy equal volumes at r.t.p., 1 volume of hydrogen and 1 volume of chlorine are formed.	1

Qn No.	Answer	Mark
ii	Chlorine dissolves / soluble in acid / solution	1
b	Mr of NaC <i>l</i> = 23 + 35.5 = 58.5	
	From eqn	
	2 moles NaCl produce 1 mole Cl ₂	
	2(58.5 g) NaCl produce 71 g Cl ₂	
	117 g NaCl produce 71 g Cl ₂	
	117 tonnes NaCl produce 71 tonnes Cl ₂	1
	23.4 tonnes NaCl produce (23.4 ÷ 117) x 71 tonnes Cl_2 = 14.2 tonnes	1
	No. of mole of Cl_2 = 142 000 000 mol ÷ 71 g/mol	
	= 200 000	
	Volume of Cl_2 = 200 000 x 24 dm ³ = 4.80 x 10 ⁶ dm ³	1
С	Seawater is a concentrated sodium chloride solution.	
	Electrolysis of concentrated sodium chloride solution produces chlorine which is toxic.	1
	Add water to dilute the seawater. Electrolysis dilute sodium chloride solution produces hydrogen and oxygen.	1
	Total	9

Qn No.	Answer	Mark
7	Advantages of fermentation / disadvantages of hydration:	
	 Sugar cane can be re-grown/is renewable but crude oil is non-renewable/finite/cannot be replaced. Fermentation of glucose uses a lower temperature (30 °C) than hydration of ethene (300 °C), so energy cost is lower than that for hydration of ethene. Fermentation of glucose uses a lower pressure (1 atm) than hydration of ethene (60–70 atm) so energy cost/cost of equipment to maintain the pressure is lower than that for hydration of ethene. Yeast is a natural substance and not harmful whereas phosphoric acid is corrosive. Advantages of hydration / disadvantages of fermentation:	
	 Hydration of ethene is a faster process whereas fermentation is a slower process. Hydration of ethene produces pure ethanol whereas fermentation produces impure ethanol. 	4
	Any four of the above points	
	Total	4
8ai	$ \begin{array}{c c} H & H \\ -C - C \\ - I & I \\ H & CONH_2 \end{array} $	1
ij	Add aqueous sodium hydroxide to a solution containing ammonium ions. Warm the mixture gently.	1
	If the gas turns damp red litmus paper blue (ammonia), then ammonium ions are present.	1
bi	Condensation polymerisation	1
ii		
	H O H O H O H O H U U U U U U U U U U U	1

Qn No.	Answer					
С	Addition polymerisation of acrylamide in (a) produces only one product, the polymer whereas the condensation polymerisation in (b) produces the polymer and water as a by-product .					
	The mass of the polymer in (a) is the <u>same</u> as the mass of all the monomers added together whereas the mass of the polymer in (b) is <u>less</u> than that of all the monomers.					
	For addition polymerisation of double bond. For the condens a functional group at each en	sation polymerisation in				
	Any two of the above difference	es.		2		
			Total	7		
9a						
Ja	chromatography technique	stationary phase	mobile phase			
	paper chromatography	chromatography paper	ethanol	2		
bi	Component D			1		
ii	Components B and C			1		
iii	Component D			1		
ci	72			1		
ii	C ₅ H ₁₂			1		
	It is a saturated hydrocarbon since it does not decolourise aqueous bromine.					
iii	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H$	₂ O				
			reactants and products	1		
			balanced equation	1		

Qn No.	Answer	Mark
iv	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
	Tota	ıl 12

Section B

Qn No.	Answer	Mark
10ai	(least) L, hydrogen, K, J and M (most)	1
ii	M is a reactive metal which reacts with water (present in silver nitrate solution) to form hydrogen gas .	1
iii	Copper $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$	1 1
bi	Oxide of metal L turns from black to red-brown as it is reduced by hydrogen to form metal L (red-brown). This shows that hydrogen is more reactive than metal L (copper).	1
	Oxides of metals K , J and M remain white as they are not reduced by hydrogen . This shows that hydrogen is less reactive than metals K , J and M, it cannot reduce oxides of metal K , J and M.	1 1
ii	Metal L (or Copper). Iron is more reactive than metal L. Iron loses electrons more readily than metal L, the electrons will move to metal L. Hence corrosion of iron becomes faster.	1 1 1
	Total	10
4.4		1
11a	Copper and zinc	
bi	Copper	1
ii	Powdered Zamak has smaller particle size with greater surface area exposed to the acid for reaction.	1
	Thus, the frequency of effective collisions increases and rate of reaction is higher.	1
С	Atoms in pure zinc are of the same size and arranged in an orderly manner . Layers of atoms can slide over one another.	1
	Different sizes of atoms (aluminium, copper & magnesium) in the alloy disrupts the orderly arrangement , making it difficult for the layers of atoms to slide over one another.	1
di	Non-biodegradable materials are not easily decomposed by bacteria in the soil and hence they have a longer life span.	1
	However, disposal of non-biodegradable materials result in accumulation of waste in landfill, causing environmental pollution.	1

Qn No.	Answer	Mark
ii	Sacrificial protection. Metal in sacrificial metal loses electrons more easily than iron / sacrificial metal oxidised in preference to iron / sacrificial metal more reactive (magnesium) than iron. OR Covering the iron with plastic prevents iron from coming into contact with oxygen and/or water.	1 1
	Total	10