

DUNMAN SECONDARY SCHOOL

CANDIDATE NAME		
CLASS		INDEX NUMBER

PRELIMINARY EXAMINATION 2025 SECONDARY 4 EXPRESS/ 5 NORMAL ACADEMIC

MATHEMATICS 4052/02

Paper 2

2 hours 15 minutes

Solutions

Question	Answer
1(a)	$2x-1 < \frac{5+9x}{2}$
	$ \begin{array}{c} 2\\4x-2<5+9x \end{array} $
	-7 < 5x
	$x > -\frac{7}{5}$ or $x > -1.4$
1(1-)(2)	5 (2)
1(b)(i)	$b = \frac{2\left(n - 5p^2\right)}{n - p^2}$
	$n-p^2$
	$b = 12\frac{2}{3}$
	3
1(b)(ii)	$2(n-5p^2)$
	$b = \frac{2\left(n - 5p^2\right)}{n - p^2}$
	$b(n-p^2)=2(n-5p^2)$
	$bn - bp^2 = 2n - 10p^2$
	$10p^2 - bp^2 = 2n - bn$
	$p^2\left(10-b\right) = 2n - bn$
	$p^{2} = \frac{2n - bn}{10 - b}$ $p = \pm \sqrt{\frac{2n - bn}{10 - b}}$
	$\frac{10-b}{2a-b-1}$
	$p = \frac{1}{\sqrt{10-b}} \frac{2n-bn}{10-b}$
	(10.0
1(c)	$3x$ 2 $\overline{}$
	$\frac{3x}{2x-1} - \frac{2}{5-x} = 7$
	$\frac{3x(5-x)-2(2x-1)}{(2x-1)(5-x)} = 7$
	$\frac{1}{(2x-1)(5-x)}$
	$15x - 3x^2 - 4x + 2 = 7(10x - 2x^2 - 5 + x)$
	$-3x^2 + 11x + 2 - 77x + 14x^2 + 35 = 0$
	$11x^2 - 66x + 37 = 0$
	$x = \frac{-(-66) \pm \sqrt{(-66)^2 - 4(11)(37)}}{2(11)}$
	$\lambda - {2(11)}$
	$=\frac{66\pm\sqrt{2728}}{22}$
	22
	= 5.37 (3 s.f.) or 0.626 (3 s.f.)

Question	Answer	
2(a)(i)	Difference = $(3.553 - 3.3064)$ million tonnes	
	$=0.2466\times10^6$	
	$=2.47\times10^5$ tonnes	
2(a)(ii)	percentage increase = $\frac{3.553 - 3.040}{3.040} \times 100\%$	
	=16.875%	
	=16.9% (3 s.f.)	
2(a)(iii)	amount of waste in $2022 = 3.553 \times 10^6 \div 84.8 \times 100$	
	$=4.19\times10^6$ (3 s.f.)	
2(b)(i)	deposit = $20\% \times 120000 = 24000$	
	total monthly payment = $84 \times 1400 = 117600$	
	total amount = $24000 + 117600 = 141600$	
2(b)(ii)	value of car 5 years later = $120000 \times 0.85^5 = 53244.6375$	
	percentage decrease = $\frac{120000 - 53244.6375}{120000} \times 100\%$ $= 55.6\% (3 \text{ s.f.})$	

Question	Answer
3(a)	h = 0.15
3(b)	
3(c)	3.5 hours
3(d)(i)	Gradient = $-0.5 (\pm 0.1)$
3(d)(ii)	Since gradient is negative, the daily growth rate
	decreases with additional sunlight.
3(e)(i)	Straight line passing through (0, 0) and (4, 2)
3(e)(ii)	$\frac{1}{6}t^{2}(4-t) = \frac{t}{2}$ $4t^{2} - t^{3} = 3t$ $t^{3} - 4t^{2} + 3t = 0$

Question	Answer
4(a)(i)	$\overrightarrow{AB} = -2\mathbf{a} + 3\mathbf{b}$
	$\overrightarrow{AX} = \frac{1}{4} \left(-2\mathbf{a} + 3\mathbf{b} \right)$
	$=-\frac{1}{2}\mathbf{a}+\frac{3}{4}\mathbf{b}$

4(a)(ii)	$\overrightarrow{OX} = 2\mathbf{a} - \frac{1}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}$
	$=\frac{3}{2}\mathbf{a}+\frac{3}{4}\mathbf{b}$
4(b)	$\overrightarrow{BY} = 3(2\mathbf{a}) = 6\mathbf{a}$
	$\overrightarrow{XY} = \overrightarrow{XB} + \overrightarrow{BY}$
	$=\frac{3}{4}\left(-2\mathbf{a}+3\mathbf{b}\right)+6\mathbf{a}$
	$= \frac{9}{2}\mathbf{a} + \frac{9}{4}\mathbf{b}$ $\overrightarrow{OX} = \frac{1}{3}\overrightarrow{XY}$
4(c)	$\overrightarrow{OX} = \frac{1}{2}\overrightarrow{XY}$
	Since OX is parallel to XY , and X is a common point, O ,
	X and Y lie on a straight line.
4(d)	Area of triangle <i>QRX RX</i> 3
I(u)	Area of triangle $\overrightarrow{OBX} = \frac{BX}{AB} = \frac{3}{4}$
	_
	$\frac{\text{Area of triangle } OAB}{\text{Area of triangle } ABC} = \frac{OA}{BC} = \frac{2}{3} = \frac{4}{6}$
	$\frac{\text{Area of triangle } OBX}{\text{Area of triangle } OABC} = \frac{3}{4+6} = \frac{3}{10}$
4(e)	$\overrightarrow{OC} = 3\mathbf{a} + 3\mathbf{b}$
	$\overrightarrow{OW} = \frac{2}{5} (3\mathbf{a} + 3\mathbf{b})$
	$=\frac{6}{5}\mathbf{a}+\frac{6}{5}\mathbf{b}$

Question	Answer
5(a)	$3^2 = 8^2 + 7^2 - 2(8)(7)\cos \angle EFI$
	$\cos \angle EFI = \frac{8^2 + 7^2 - 3^2}{2(8)(7)}$
	$=\frac{13}{14}$
	$\angle EFI = \cos^{-1}\left(\frac{13}{14}\right) = 21.7867 = 21.8^{\circ}$
5(b)	vol of prism = $\left(8 \times 3 + \frac{1}{2} \times 7 \times 8 \times \sin 21.7867^{\circ}\right) \times 12$
	= 412.70717
	=412.71m ³
5(c)	$height = 3 + 7 \sin 21.8^{\circ}$
	= 5.5995
	= 5.60 m (3 s.f.)
5(d)	Let X be the point vertically below J .
	$CX = 7\cos 21.8^{\circ} = 6.4994$
	$BX = \sqrt{12^2 + 6.4994^2} = 13.647$
	$\tan \angle JBX = \frac{5.5995}{13.647}$
	$\angle JBX = \tan^{-1} \left(\frac{5.5995}{13.647} \right)$
	$= 22.3^{\circ} (1 \text{ d.p.})$

Page 6 of 8

Question	Answer	
6(a)	$\angle OCT = 90^{\circ} \text{ (tangent } \perp \text{ radius)}$	
	$\angle AOC = 360^{\circ} - 90^{\circ} - 90^{\circ} - 32^{\circ} (\angle \text{ sum of quadrilateral})$	
	=148°	
	$\angle ADC = 148^{\circ} \div 2$ (\angle at centre = $2\angle$ at circumference)	
	= 74°	
6(b)	$\angle CBA = 180^{\circ} - 74^{\circ}$ ($\angle s$ in opposite segment)	
	=106°	
	$\angle OCA = \frac{180^{\circ} - 148^{\circ}}{2}$ (base $\angle s$ of isosceles triangle)	
	=16°	
	$\angle OCB = 16^{\circ} + 38^{\circ}$ (base $\angle s$ of isosceles triangle)	
	= 54°	
	$\angle OCB + \angle CBA = 106^{\circ} + 54^{\circ}$	
	= 160° ≠ 180°	
	Therefore, by converse of interior angles, OC is not parallel to AB .	
6(c)	$\angle AOB = 38^{\circ} \times 2$ (\angle at centre = 2 \angle at circumference)	
	= 76°	
	Area of sector $=\frac{76}{360} \times \pi (10^2) = \frac{190}{9} \pi$	
	Area of triangle = $\frac{1}{2}(10)(10)\sin 76^\circ = 48.5147$	
	Area of shaded region = $\frac{190}{9}\pi - 48.5147 = 17.8 \text{ cm}^2 \text{ (3 s.f.)}$	

Page **7** of **8**

Question	Answer	
7(a)(i)	n+20	
7(a)(i) 7(a)(ii)		
/(a)(II)	Product of top left and bottom right = $n(n+20) = n^2 + 20n$	
	Product of top right and bottom left =	
	$(n+2)(n+18) = n^2 + 20n + 36$	
	Difference = $(n^2 + 20n + 36) - (n^2 + 20n) = 36$	
7(a)(iii)	Sum = $n + (n+2) + (n+10) + (n+18) + (n+20) = 5n + 50$	
	Let $5n + 50 = 1715 \implies n = 333$	
	Let $3n + 30 = 1/13 \rightarrow n = 333$	
	If $n = 333$, the cross will be 333 335	
	$\dots 343 \dots$	
	351 353	
	331 333	
	However, $333 = 9 \times 37$, the first number will be in the last	
	column of the number grid, therefore, the sum cannot be	
	1715.	
7(b)(i)	$T_{10} = 2(10)^2 - 10 + 3 = 193$	
7(b)(ii)	$T_{n+1} = 2(n+1)^2 - (n+1) + 3$	
	$=2(n^2+2n+1)-n-1+3$	
	$=2n^2+3n+4$	
	$D = 2n^2 + 3n + 4 - (2n^2 - n + 3)$	
	,	
	=4n+1	
7(b)(iii)	= 4n+1 Since <i>D</i> is a linear expression in <i>n</i> and the coefficient of <i>n</i>	
	is 4, it means that the difference increases by 4 each time n	
	increases by 1.	

Question	Answer	
8(a)(i)	7.5 hours (± 0.1)	
8(a)(ii)	Q1 = 6, Q3 = 9.4	
	$IQR = 9.4 - 6 = 3.4 (\pm 0.1)$	
8(b)	32 students spent 5 hours or less.	
	168 students spent at least 5 hours.	
	Probability = $\frac{168}{200} = \frac{21}{25} = 0.84$	
8(c)	In general, teenagers in Country X spent less daily screen time with median of 6.5 hours compared to Singapore's median of 7.5 hours.	
	The amount of daily screen time spent by teenagers in Country X has a larger spread with an IQR of 5.2 hours as compared to that of Singapore with IQR of 3.4 hours.	

Question	Answer
9(a)	Arc length = $2\pi(2) \times \frac{1}{5} = \frac{4}{5}\pi = 2.513 = 2.5 \text{ m (1 d.p.)}$
9(b)	Volume of air =
	$\pi (2.5)^2 \times 0.5 \times 50 \div 60 = 8.1812 = 8.18 (3 \text{ s.f.})$
9(c)	For air circulation Minimum airflow requirement $= 30 \times 20 \times 8 \div 5 = 960 \text{ m}^3 / \text{min}$ $VFR = \pi (3)^2 \times 0.6 = 5.4\pi = 16.9646$ Total airflow per minute of fans = $VFR \times 70 \times 2 = 756\pi = 2375.044$
	Therefore, 2375.044 > 960, minimum airflow requirement is met. For comfortable cooling environment VPS = $5.4\pi \times 45 \div 60 = 4.05\pi$ Air velocity = $4.05\pi \div \pi(3)^2 = 0.45$ m/s > 0.3 m/s
	Therefore, comfortable cooling environment is met. Hence, the recommendation is suitable.