

GAN ENG SENG SCHOOL Preliminary Examination 2025

CANDIDATE NAME		
CLASS	INDEX NUMBER	

MATHEMATICS

4052/02

Paper 2

29 August 2025 2 hour 15 minutes

Sec 4 Express / 5 Normal (Academic)

Candidates are to answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 90.

	For Examiner's Use
Total	90

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1.	(a)	Solve the inequality	$-\frac{2x+1}{2} \le$	$\frac{3x-1}{5}$.
			3	− `

Answer _____ [2]

(b) Express as a single fraction in its simplest form $-\frac{x}{1-3x} + \frac{7}{(3x-1)^2}$.

Answer _____ [3]

		~ 1	.1		1.		. •
(c)	Solve	the	sımu	ltaneous	equa	tions

$$5x = 49 - 4y$$
$$4x - 5y = -10$$

Answer x =

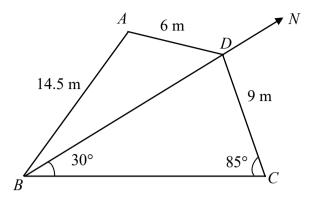
(d) Simplify $\left(\frac{h^{15}}{64f^{12}}\right)^{-\frac{2}{3}}$.

Answer _____ [2]

2. The organiser of the SG60 events held SG60 concerts on two specific weekends in June 2025. The seats in the concert hall were divided into three sections. The table below summarises the number of tickets sold on Saturday and Sunday in week 1.

	Section A	Section B	Section C (obstructed view)
Saturday	164	144	50
Sunday	128	90	40

The price per ticket for each section is as shown in the table below.

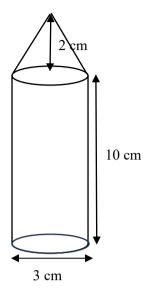

	Section A	Section B	Section C
Price per ticket	\$30	\$25	\$20

(b)	Represent the price of the tick	ets in a 3×1 column matrix P
------------	---------------------------------	-------------------------------------

Answer	[1]

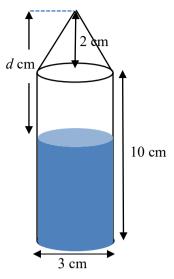
Evaluate the matrix (1 1) AP and interpret the element(s) in the matrix.	
Answer	
In week 2, the number of tickets sold changes for the various sections on Saturday a Sunday.	an
The number tickets sold for section A increased by 25%.	
The number of tickets sold for section B increased by 50%.	
The number to tickets sold for section C decreased to 80%.	
(i) Write down a matrix M such that the elements of matrix F, where F = AM, represents the number of tickets sold for sections A, B and C respectively on Sa and Sunday in week 2.	ıtu
Answer	
(ii) State what each element of matrix FP represents.	
(ii) State what each element of matrix PT represents.	
Answer	
11151101	

3. The diagram below shows the points A, B, C and D on the level ground where D is due north of B. CD = 9 m, AB = 14.5 m, AD = 6 m, $\angle DBC = 30^{\circ}$ and $\angle DCB = 85^{\circ}$.


(a) Calculate the length of BD.

1 10 02 11 010	122	$\Gamma 2$
Answer	m	141

(b) Calculate the bearing of A from D.


Find the angle of elevation of T from X .	
from X is the greatest.	
	 (c) CT is a vertical pole of height 12 m standing at C. X is a point along the path BD such that the angle of elevation of the top of the pole, T, from X is the greatest. Find the angle of elevation of T from X.

4. A container is in the shape of a cylinder of height 10 cm with a conical top of height 2 cm. The base of the container has a diameter of 3 cm.

(a) Calculate the volume of the container correct to 3 significant figures.

(b) 75% of the container is filled with water as shown in the diagram below. Calculate the depth, d cm, of the empty space in the container.

Answer _____ [3]

All the lic	uid is ti	ransferred	to fill 1	un a nyra	mid with	square base	ed comple	tely in x 1	minutes.
A THE CHIC HIC	լայա ոь ա	ansienca	to IIII t	up u pyru	mina with	square ouse	ou compie	cory iii A	illillates.

(c) Find the height of the pyramid if the side of the base is 4 cm.

Answer	cm	[2]

(d) Find the time taken in terms of x, for the liquid to fill up to $\frac{1}{3}$ the height of the square pyramid in (c).

Answer minutes [1]

5. (a) Complete the table of values for $y = \frac{x^2}{7} + \frac{2}{x} - 2$.

Give your answer to 2 decimal places.

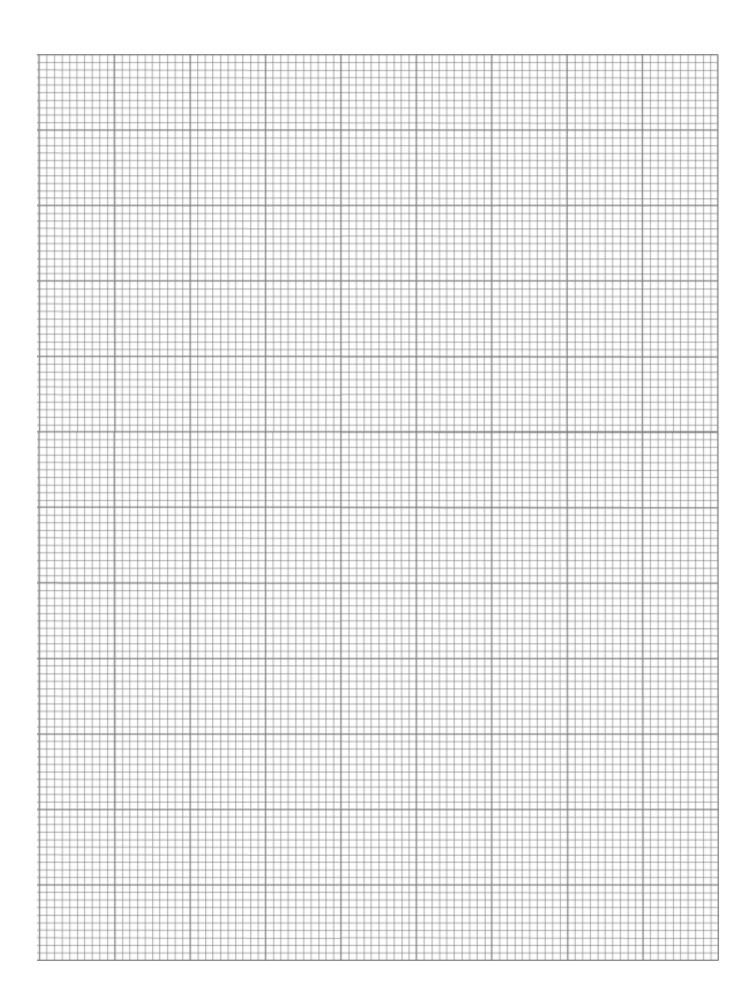
х	1	2	3	4	5	6
У	0.14	- 0.42		0.79	1.97	3.48

Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for 0 < x ≤ 6.
 Using a scale of 4 cm to 1 unit, draw a vertical y-axis for -1 ≤ y ≤ 5.
 On your grid opposite, plot the points given in the table and join them with a smooth curve.

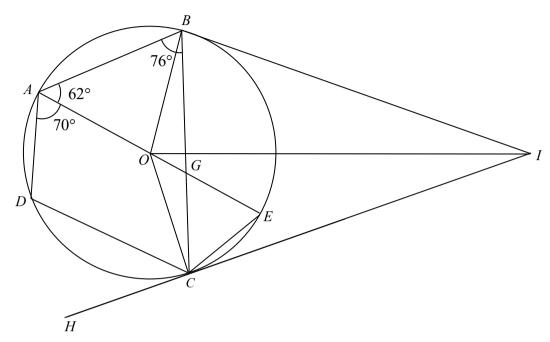
[3]

[1]

(c)	Use your graph to explain why the equation	$\frac{x^2}{7} +$	$\frac{2}{x} - 2 = 0$	has two	solutions	for
	$0 < x \le 6$.					


Answer

[1]

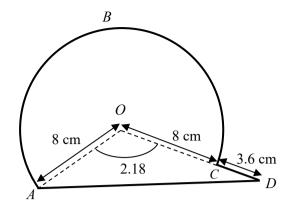

(d) By drawing a tangent, find the gradient of the curve at (4, 0.79).

Answer _____ [2]

(e) By drawing a suitable straight line on the grid, solve the equation $x^3 + 7x^2 - 28x + 14 = 0$.

6. (a) The points A, B, C, D and E lie on a circle with centre O. The line HI and BI are tangents to the circle at C and B respectively. BC intersects AE at G. Given that $\angle ABC = 76^{\circ}$, $\angle OAB = 62^{\circ}$ and $\angle DAE = 70^{\circ}$.

(i) Show that the triangle *OBI* is congruent to triangle *OCI*. Give a reason for each statement you make.


(ii) Give reasons for each step of your working, find

(a) angle DCB,

Answer _____ [1]

(b) angle <i>GCO</i> ,		
	Answer	_
(c) angle BCH.		

(b) In the figure below, O is the centre of the circle. ABCO is a sector.

Given that $\angle AOC = 2.18$ radians, OA = OC = 8 cm and CD = 3.6 cm, (i) calculate the perimeter of ABCDA,

Answer _____ cm [4]

(ii) find the value of $\frac{\text{area of sector } ABCO}{\text{area of triangle } AOD}$. Give your answer correct to 2 decimal places.

Answer _____ [3]

7. The waiting times, in minutes, for 50 patients at the Accident and Emergency clinics in two hospitals are given below.

Hospital A

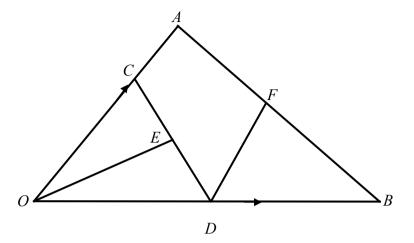
Time (mins)	No. of patients
$20 < t \le 24$	8
$24 < t \le 28$	10
$28 < t \le 32$	21
32 < t ≤36	7
$36 < t \le 40$	4

Hospital B

Mean = 29.12	
Standard Deviation =	3.2

(a)	Calculate the	mean and	standard	deviation	of the	waiting	times in	hospital	ΙΑ.

Angwar	Mean =	ſ	1	-
Answer	wican –		L	


$$SD = \underline{\hspace{1cm}} [2]$$

(b) Compare briefly, the waiting time for the A&E clinics in both hospitals.

Answer			

(c) Two patients are selected at random from the 50 patients in hospital A.

8. In triangle OAB, the point C on OA is such that 3OC = 2OA. E and D are the midpoints of CD and OB respectively and AF = mAB. $\overrightarrow{OA} = \boldsymbol{a}$ and $\overrightarrow{OB} = \boldsymbol{b}$.

- (a) Express, as simply as possible, in terms of a and b,
 - (i) \overrightarrow{AB} ,

Answer	Γ	1	1

(ii) \overrightarrow{CE} .

(b) (i) Write down \overrightarrow{OF} in terms of **a**, **b** and m.

Answer $\overrightarrow{OF} =$ [2]

(ii)	$\overrightarrow{OE} =$	$\frac{3}{5}(1-n)$	$(n) \mathbf{a} + \frac{3}{5} m \mathbf{b}$
		7	7

Show that O, E and F lie on a straight line.

Answer

[2]

- (c) Find, as a fraction in its simplest form,
 - (i) $\frac{\text{area of triangle } AEC}{\text{area of triangle } OEC}$,

Answer _____ [1]

(ii) $\frac{\text{area of triangle } OCD}{\text{area of triangle } OAB}$.

Answer _____ [1]

9.	Ali and Robert participated in the 42 km running event organised by SC Company.
	Ali completed the race with an average speed of x km/h. Robert completed the race at an
	average speed of 2 km/h slower than Ali.

(a)	Given that Robert completed the race 30 minutes later than Ali, form an equation in
	x and show that it reduces to $x^2 - 2x - 168 = 0$.

Answer

[4]

(b) Solve the equation $x^2 - 2x - 168 = 0$.

Answer $x = _____or___[2]$

)	Explain why one of the solutions in (b) must be rejected.		
	Answer		
			- _ [
	Calculate the time taken for Robert to complete the race.		. L
	·		
	Answer	hours	[]

- **10.** Mdm Siti is planning a trip from Singapore to London. She will spend 6 days in London. Here are the information on her trip.
 - The total flight duration is 13 hours 50 minutes, which excludes a 2-hour layover at Doha.

Singapore to Doha	7 h 40 min
Doha to London	6 h 10 min

- Her flight departs at 11:15 PM (Singapore time).
- London time is 7 hours behind Singapore time.
- The exchange rate is 1 Pound Sterling (£) = 1.65 Singapore Dollars (SGD).
- (a) What is her arrival time in London, in local London time?

Mdm Siti plans to bring a total amount of SGD\$700 for meals, transport, sightseeing and emergencies.

She plans to spend the following amount on average for the entire trip in London:

£25 per day on food

£10 per day on transport

£15 per day on sightseeing

10% of the total amount for emergencies

(b) By showing your working clearly, determine whether SGD\$700 is sufficient for her meals, transport and sightseeing.

Answer	Sufficient / Insufficient	[3

(c) Mdm Siti plans to spend four days sightseeing in London and only visit 2 attractions per day. She is considering three sightseeing options:

Option	Type	Description
A	Fixed daily pass	4-day London Sightseeing Pass, covering
		unlimited entries for £90, with 5% discount if
		she stays more than 5 days in London.
В	Pay-as-you-go	Each attraction costs £12.50.
С	Partial Pass +	She buys a 2-day pass for £35, covering
	Pay-as-you-go	unlimited entries for 2 days, and pays £6 per
		attraction for the other 2 days.

Assuming the total amount set aside for sightseeing remains the same for the four days, show your calculations and explain which option would be more cost-effective for Mdm Siti, considering her sightseeing plans and budget.

Solutions

1(a)	2x+1 $3x-1$	
-()	$-\frac{2x+1}{3} \le \frac{3x-1}{-5}$	
	2x+1 $3x-1$	
	$-\frac{2x+1}{3} \le -\frac{3x-1}{5}$	
	$5(2x+1) \ge 3(3x-1)$	M 1
	$10x + 5 \ge 9x - 3$	
1(1-)	$x \ge -8$	A1
1(b)	$-\frac{x}{1-3x} + \frac{7}{(3x-1)^2}$	
	_ x _ 7	
	$= \frac{x}{3x-1} + \frac{7}{(3x-1)^2}$	
	$=\frac{x(3x-1)}{(3x-1)^2} + \frac{7}{(3x-1)^2}$	
		M1
	$=\frac{x(3x-1)+7}{(3x-1)^2}$	M1
		1411
	$=\frac{3x^2-x+7}{(3x-1)^2}$	A1
	$(3x-1)^2$	
	Alt method	
	$-\frac{x}{1-3x} + \frac{7}{(3x-1)^2}$	
	$=-\frac{x}{1-3x}+\frac{7}{(1-3x)^2}$	
		M1
	$= \frac{7}{(1-3x)^2} - \frac{x(1-3x)}{(1-3x)^2}$	M1
	$\begin{bmatrix} 7-x+3x^2 \end{bmatrix}$	
	$=\frac{7-x+3x^2}{(3x-1)^2}$	
	$=\frac{3x^2-x+7}{(3x-1)^2}$	
	$(3x-1)^2$	A1

1(c)	5x = 49 - 4y (1)	
	4x-5y=-10(2)	
	From (1): $5x + 4y = 49 (3)$	
	$(3) \times 4:5x + 4y = 49 (4)$	
	$(2) \times 5 : 20x - 25y = -50 (5)$	
	(4)-(5):	
	16 - (-25y) = 196 - (-50)	M 1
	41y = 246	
	y = 6	A1
	Subt $y = 6$ into (1)	AI
	5x = 49 - 4(6)	
	5x = 25	
	x = 5	
	$Ans \ r = 5 v = 6$	A1
1(d)	Ans $x = 5$, $y = 6$ $\left(\frac{h^{15}}{64f^{12}}\right)^{-\frac{2}{3}} = \left(\frac{64f^{12}}{h^{15}}\right)^{\frac{2}{3}}$	M1
	$= \left(\frac{64f^{12}}{h^{15}}\right)^{\frac{2}{3}}$	
	$=\frac{16f^8}{h^{10}}$	
	h^{10}	A1
2()		D1
2(a)	$ \begin{pmatrix} 164 & 144 & 50 \\ 128 & 90 & 40 \end{pmatrix} $	B1
2(b)	$\begin{pmatrix} 30 \\ 25 \end{pmatrix}$	B1
	20	
2(c)	$\mathbf{AP} = \begin{pmatrix} 164 & 144 & 50 \\ 128 & 90 & 40 \end{pmatrix} \begin{pmatrix} 30 \\ 25 \\ 20 \end{pmatrix}$	M1
	$= \begin{pmatrix} 9520 \\ 6890 \end{pmatrix}$	
	$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{AP} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 9520 \\ 6890 \end{pmatrix}$	
	= (16 410)	A1

	The element 16410 represents the total amount collected from the sales of tickets for Saturday and Sunday for the 1 st weekend.	B1
2(d)(i)	$ \begin{pmatrix} 1.25 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 0.8 \end{pmatrix} $	B1
2(d)(ii)	Each element in matrix FP represents the total amount collected from the sales of tickets for Saturday and Sunday respectively for the 2 nd weekend.	B1
3(a)	By sine rule, $\frac{BD}{\sin 85^{\circ}} = \frac{9}{\sin 30^{\circ}}$ BD = 17.9315 (6s.f)	M1
	BD = 17.9 m (3 s.f)	A1
3(b)	$\cos \angle BDA = \frac{6^2 + 17.9315^2 - 14.5^2}{2(6)(17.9315)}$	M1
	$=46.8039^{\circ} (4 \text{ d.p})$	
	Bearing = 180° + 46.8039° = 226.804° = 226.8°	M1
3(c)	Note: Greatest angle of elevation/depression occurs at shortest distance <i>CX</i> .	A1
	In triangle DCX, $\sin 65^{\circ} = \frac{CX}{9}$	M1
	$CX = 9\sin 65^{\circ}$	
	Let θ be the greatest angle of elevation $\tan \theta = \frac{12}{9 \sin 65^{\circ}}$	M1
	9 sin 65° θ = 55.7948° (4 d.p) θ = 55.8° (1 d.p)	A1
	Students may use area of triangle to find <i>CX</i> .	
4(a)	Vol. of container = $\pi (1.5)^2 (10) + \frac{1}{2} \pi (1.5)^2 (2)$	M1, M1 for each working
	$= 75.3982 \text{ cm}^3 (4 \text{ s.f})$ = 75.4 cm ³ (3 s.f)	A1

4(b)	$V_{\text{ol}} = 75$	M1
	Vol. of water = $\frac{75}{100} \times 75.3982$	
	=56.5487 (4 s.f)	
	56 5487	M 1
	Height of water = $\frac{56.5487}{\pi (1.5)^2}$	
	= 8.00 cm	
	d = 10 + 2 - 8.0000	
	$\begin{vmatrix} a - 10 + 2 - 8.0000 \\ = 4.00 (3 \text{ s.f.}) \end{vmatrix}$	A1
4(c)	Let the height of pyramid be h cm.	
4(0)	1	M1
	$\frac{1}{3} \times 4 \times 4 \times h = 56.5487$	1411
	h = 10.6029 (6 s.f)	
	h = 10.6 cm (3 s.f)	A1
4(d)	$\left[(2)^3 \right]$	
	$Time = \left[1 - \left(\frac{2}{3}\right)^3\right] x$	
	$=\frac{19}{27}x$ minutes	
	$-\frac{1}{27}x$ minutes	B 1
	Accept $\frac{1}{27}x$ minutes (as students may see it in another perspective)	
5(a)	P = -0.05	B1
5(b)	Refer to graph paper	
5(c)	The graph $y = \frac{x^2}{7} + \frac{2}{x} - 2$ cuts the x-axis at 2 points. Hence,	
	The graph $y = \frac{-1}{7} + \frac{-2}{x}$ cuts the x-axis at 2 points. Hence,	B 1
	r^2 2	
	$\frac{x^2}{7} + \frac{2}{x} - 2 = 0 \text{ has 2 solutions}$	
5 (d)	Accurate tangent line drawn	M1
5(d)	Accurate tangent fine drawn	IVII
	1 8	
	$Gradient = \frac{1.8}{1.8}$	
		A1
5 (c)	$= 1 (accepts 1.02 \pm 0.05)$	111
5(e)	$x^3 + 7x^2 - 28x + 14 = 0$	
	$x^{2} + 7x - 28 + \frac{14}{x} = 0$ $\frac{x^{2}}{7} + x - 4 + \frac{2}{x} = 0$	
	$\begin{bmatrix} x & 1/x & 201 & -0 \\ x & & & \end{bmatrix}$	
	$\int x^2$ 2 2	
	$\frac{1}{7} + x - 4 + \frac{1}{x} = 0$	
	$\frac{x^2}{7} + \frac{2}{x} - 2 = -x + 2$	M1
	$\int \int dx$	
		M1
	Line $y = 2 - x$ drawn	
	Enomo annulo	
	From graph,	A1
	$x = 2.35 \pm 0.05$	

6(a)(i)	$\angle OBI = 90^{\circ}$ (tan perpendicular rad)	
	$\angle OCI = 90^{\circ}$ (tan perpendicular rad)	
	OI is a common line.	M1
	OB = OC (radii of the same circle)	
	By RHS , triangle <i>OBI</i> is congruent to triangle <i>OCI</i> .	A1
6(a)(ii)(a)	$\angle DCB = 180 - (62 + 70)$ (\angle in opposite segment)	B1
<i>(</i> ()(!)(1)	= 48°	DI
6(a)(ii)(b)	$\angle GCE = \angle GAB$	M1
	$= 62^{\circ} \ (\text{in the same segment})$	1411
	OC = OE (radii of the same circle)	
	$\angle OCE = \angle OEC = 76^{\circ}$ (base of isos triangle)	
	$\angle GOC = 76 - 62$	
	=14°	A1
	Accepts other methods (eg. Find angle <i>OBC</i> first)	
6(a)(ii)(c)	$\angle OCH = 90^{\circ}$ (tan perpendicular rad)	
	$\angle BCH = 90 + 14$	
	=104°	B1
(b)	Major arclength = $(2\pi - 2.18) \times 8$	M1
	$=16\pi-17.44$	
		N/1
	$AD^2 = 8^2 + (8+3.6)^2 - 2(8)(8+3.6)\cos 2.18$	M1
	AD = 17.4575 (6s.f)	
	Perimeter = $16\pi - 17.44 + 3.6 + 17.4575$	241
	= 53.9 cm (3 s.f)	M1 A1
(c)	1 (0)2 (2 2.10)	711
	$\frac{\text{area of sector ABCO}}{\text{area of triangle AOD}} = \frac{\frac{1}{2} \times (8)^2 \times (2\pi - 2.18)}{\frac{1}{2} \times (8) \times (8 + 3.6) \sin 2.18}$	M1 for
	area of triangle AOD $\frac{1}{2} \times (8) \times (8+3.6) \sin 2.18$	denominator M1 for
	= 3.45052 (5 d.p)	numberator
	= 3.45 (2 d.p)	
7(a)	(1)	M1
7(a)	Mean = $\frac{22(8) + 26(10) + 30(21) + 34(7) + 38(4)}{50}$	IVII
	=29.12 minutes	
	$\frac{\sum fx^2}{N} = \frac{8(22)^2 + 10(26)^2 + 21(30)^2 + 7(34)^2 + 4(38)^2}{50}$	M1
	= 868	
	Standard deviation = $\sqrt{868-29.12^2}$	
	= 4.474997	A1
7(b)	The mean waiting time for hospital A and hospital are the same (29.12	B1
	min). Hence, the average waiting time is generally the same for both	
	hospital.	

	However, the standard deviation for waiting times in hospital B (3.2 min) is lower than the waiting times in hospital A (4.47 min). Hence, the waiting times in hospital B are more consistent.	B1
7(c)	P(required) = $\frac{8}{50} \times \frac{11}{49} + \frac{11}{50} \times \frac{8}{49}$	M1
	$= \frac{88}{1225}$ Accepts other relevant method	A1
8(a)(i)	-a+b	B1
8(a)(ii)	$ \frac{-\underline{a} + \underline{b}}{\overline{CD} = \overrightarrow{CO} + \overrightarrow{OD}} $	
	$= \frac{2}{3}(-a) + \frac{1}{2}(b)$ $= -\frac{2}{3}a + \frac{1}{2}b$	M1
	$\overrightarrow{CE} = \frac{1}{2} \left(-\frac{2}{3} \cancel{a} + \frac{1}{2} \cancel{b} \right)$ $= -\frac{1}{3} \cancel{a} + \frac{1}{4} \cancel{b}$	A1
8(b)(i)	$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF}$	M1
- ()()	-a+m(-a+b)	
	$= (1-m)\ddot{a} + m\ddot{b}$	A1
8(b)(ii)	$ \begin{aligned} &-\underline{a} + m(-\underline{a} + \underline{b}) \\ &= (1 - m)\underline{a} + m\underline{b} \\ &\overrightarrow{OE} = \frac{3}{5}\overrightarrow{OF} \end{aligned} $	M1
	Since \overrightarrow{OE} is a scalar multiple of \overrightarrow{OF} and there is a common point O , O , E and F lie on a straight line.	A1
8(c)(i)	$\frac{\text{area of triangle AEC}}{\text{area of triangle OEC}} = \frac{\frac{1}{2} \times 1 \times h}{\frac{1}{2} \times 2 \times h}$ $= \frac{1}{2}$	B1
9 (a)(ii)	2	
8(c)(ii)	$\frac{\text{area of triangle OCD}}{\text{area of triangle OAD}} = \frac{\text{area of triangle OCD}}{\text{area of triangle OAD}} \times \frac{\text{area of triangle OAD}}{\text{area of triangle OAB}}$ $= \frac{2}{3} \times \frac{1}{2}$	
	$=\frac{1}{2}$	B1
	3	
9(a)	Accepts other methods	
)(a)	Time taken by Ali = $\frac{42}{x}$ h	
	Time taken by Robert = $\frac{42}{x-2}$ h	
	$\frac{42}{x-2} - \frac{42}{x} = \frac{1}{2}$	
	x-2 x 2 M D2 DDELIM 2025 SZV	

		M1 ($\frac{42}{x}$ and
	42x-42(x-2) 1	$\frac{42}{x-2}$ seen)
	$\frac{42x - 42(x - 2)}{x(x - 2)} = \frac{1}{2}$	M1
	$\frac{84}{x(x-2)} = \frac{1}{2}$	
	$x(x-2) = 168$ $x^2 - 2x - 168 = 0$	M1
	$x^2 - 2x - 168 = 0$	
		M1 (able to reduce)
9(b)	$x^2 - 2x - 168 = 0$	
	(x+12)(x-14) = 0	M1
	x = -12 or x = 14	A1
	Accept by Formula method	
9(c)	Since x represents speed, x cannot be negative.	B1
9(d)	Time taken = 42	
	$Time taken = \frac{42}{14 - 2}$	D4
12()	=3.5 h	B1
10(a)	Total time taken = $13 \text{ h} 50 \text{ min} + 2 \text{ h}$ = $15\text{h} 50 \text{ min}$	
		B1
10(b)	Time = 8.05 am Total per day = £25 + £10 + £15	
10(0)	= £50	
	Total for 6 days = 6×50	M1
	= £300	
	Assuming that he needs to save 10% of the total amount of \$700	
	Total planned spending = $300(1.65) + \frac{10}{100} \times 700$	M1
	100	
	= \$565	
	Sufficient	A1
	Alternative Solutions:	
	Assuming that he needs to save 10% of the total amount planned for 6 days:	
	Total planned spending = $300(1.65) + \frac{10}{100} \times (300 \times 1.65)$	M1*
	= \$544.50	
	— \$344.30	

10(c)	Budget = 15×4	
	=£60	M1
	Option A	
	Full price = £60	
	$Discount = \frac{5}{100} \times 90$	
	= £4.50	
	F: 1	M1
	Final cost = $60 - 4.50$ = £55.50	1711
	Exceed budget	
	Option B	
	8 attractions ×12.50	M1
	=£100	
	Exceed budget	
	Option C	
	2 day pass = £35	
	Remaining 2 days = 4 attractions $\times 6$	
	=£24 Total cost = £35 + £24	M1
	=£59	
	Cover all attractions with sufficient budget.	
	Money left = $£60 - £59$	
	= £1]
	I would recommend C.	- A1
	It meets all her sightseeing needs at the lowest cost and meeting her budget of \$60.	