

CHEMIST Paper 2	RY		092/02 ust 2025 minutes
CLASS	4	INDEX NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE ON ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer **one** question.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use	
Section A	
Section B	
Total	/ 80

Section A

Answer all questions.

1 The electron arrangement in the outer shells of five elements, **A**, **B**, **C**, **D** and **E** are shown in Fig.1.1. All elements are from Period 3 of the Periodic Table.

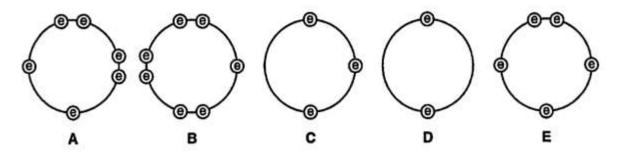


Fig. 1.1

Use the letters A, B, C, D and E to answer the following questions.

Each letter may be used once, more than once or not at all.

(a)	Which two elements are most likely to be metals?	
	and	[1]
(b)	Which element has an atomic number of 16?	
		.[1]
(c)	Which element will form double covalent bonds with an oxygen atom?	
		.[1]
(d)	Which two elements will form an ionic compound with the formula type XY?	
	and	[1]
(e)	Which element will form an oxide that reacts with both acids and bases?	
		.[1]

[Total: 5]

2 (a) Table 2.1 shows information of atoms.

Complete Table 2.1.

Table 2.1

atoms	number of protons	number of neutrons	number of electrons
³⁹ ₁₉ K			
		28	24

[2]

(b) The strength of interactions between particles determines whether the substance is a solid, liquid or gas at room temperature.

Potassium oxide, K_2O , is a solid while sulfur trioxide, SO_3 , is a liquid at room temperature.

(1)	while sulfur trioxide is a liquid at room temperature.
	[3
(ii)	State one other difference in the physical properties of potassium oxide and sulfur trioxide.
	[1

(iii)	Draw a 'dot-and-cross' diagram to show the bonding in K ₂ O.
	Show all outer shell electrons.

[2]

(c) Potassium oxide, aluminium oxide and sulfur trioxide are each added to separate samples of dilute sulfuric acid and aqueous sodium hydroxide.

Complete Table 2.2 to show whether a reaction occurs in each case.

Put a tick (\checkmark) in the box if a reaction occurs.

Table 2.2

	dilute sulfuric acid	dilute sodium hydroxide
potassium oxide		
aluminium oxide		
sulfur trioxide		

[2]

[Total: 10]

- A student performs three experiments. In the first experiment, she adds large pieces of copper(II) carbonate to dilute hydrochloric acid. Copper(II) carbonate added is in excess.
 - (a) Fig. 3.1 shows how the mass of the reaction mixture changes with time as the reaction proceeds.

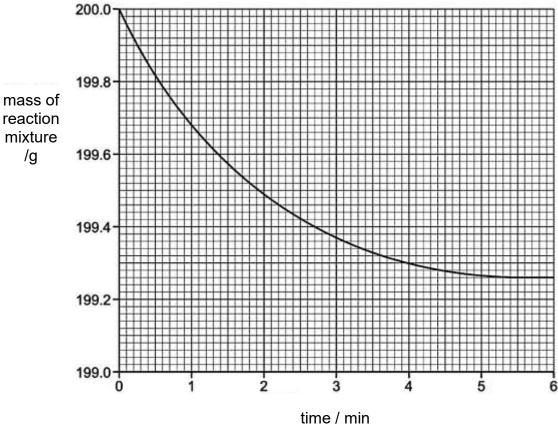


Fig. 3.1

(i) In the second experiment, powdered copper(II) carbonate is used instead of large pieces of copper(II) carbonate. All other conditions and the mass of copper(II) carbonate stay the same.

Draw a line on the grid in Fig. 3.1 to show how the mass of the reaction mixture changes with time when powdered copper(II) carbonate is used.

[1]

	(ii)	In the third experiment, the student uses large pieces of copper(II) carbonate and hydrochloric acid of a higher concentration.
		All other conditions stay the same.
		Describe and explain the difference in the rate of reaction when hydrochloric acid of a higher concentration is used.
		[2]
(b)		r the copper(II) carbonate has reacted completely with hydrochloric acid, student places a clean strip of zinc metal into the resulting solution.
	Sug	gest and explain the observations.
		[2]
(c)	Des	cribe what you see when:
	(i)	a few drops of aqueous ammonia are added to an aqueous solution containing copper(II) ions.
		[1]
	(ii)	excess aqueous ammonia is added to an aqueous solution containing copper(II) ions.
		[1]
(d)		cribe how to prepare crystals of ammonium chloride by reacting aqueous nonia with dilute hydrochloric acid.
		[3]
		[Total: 10]

1	(a)	Petr	ol is a mixture of hydrocarbons that includes octane, C ₈ H ₁₈ .
		(i)	Write an equation for the complete combustion of octane.
			[1]
		(ii)	Suggest a reason why the fuel in an internal combustion engine is unlikely to undergo complete combustion.
			[1]
	(b)		aust gases from petrol engines contain compounds which are harmful to environment. These includes oxides of carbon and nitrogen.
		(i)	Write an equation to show the removal of carbon monoxide and nitrogen monoxide from the exhaust gases.
			[1]
		(ii)	Thiophene, C ₄ H ₄ S, is present in crude oil fractions. During combustion, it produces sulfur dioxide. Combustion of fuels also produces nitrogen dioxide.
			Explain the effects of sulfur dioxide and nitrogen dioxide being released into the atmosphere.
			[2]
	(c)		ain, in terms of specific processes, how the carbon cycle regulates the unt of carbon dioxide in the atmosphere.
			[1]
			[Total: 6]

5 (a) Fig. 5.1 show some organic compound reactions.

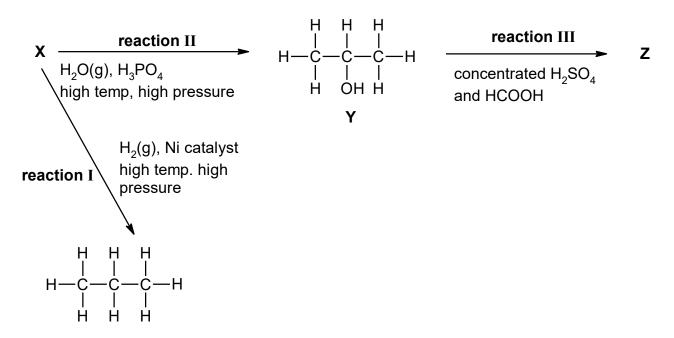


Fig. 5.1

(i) Draw the organic compounds, **X** and **Z** in the spaces provided.

X:

Z:

[2]

(ii) Reaction II produces compound **Y** and one other isomer. Draw the full structural formula of the isomer.

	[1]
(b)	After the fermentation of sugar from sugarcane to produce ethanol, some ethyl ethanoate is found to be present in the mixture.
	Suggest how this ethyl ethanoate may be formed.
	[2]
(c)	A student is given three unlabelled bottles containing colourless liquids.
	One of the liquids is ethanol, one is ethanoic acid, and the other is ethyl ethanoate.
	Describe the reagents and conditions for a chemical test that gives positive result only with ethanol. Describe what would be observed.
	reagents and conditions
	[1]
	observations
	[1]

(d) 1.00 g of a powder contains

0.30 g of glucose, $C_6H_{12}O_6$

0.45 g of citric acid, C₆H₈O₇

0.25 g of sodium hydrogencarbonate, NaHCO₃

In the presence of water, the powder effervescences as citric acid reacts with the sodium hydrogencarbonate to form sodium citrate, Na₃(C₆H₅O₇).

$$3NaHCO_3(s) + C_6H_8O_7(aq) \rightarrow Na_3(C_6H_5O_7)(aq) + 3CO_2(g) + 3H_2O(l)$$

(i) Determine the limiting reactant when 1.00 g of this powder reacts.

[2]

(ii) In an experiment, 0.043 dm³ of CO₂ is produced in the above reaction from using 1.00 g of the powder.

Calculate the percentage yield obtained in this experiment.

[2]

[Total: 11]

6 (a) Synthetic polymers are macromolecules which have many uses. They are made from monomers which combine in polymerisation reactions.

The synthetic polymer, PHBV, is a polymer which is often used in packaging material.

(i) Draw the structural formulae of the two monomers used to make PHBV.

(ii) State the type of reaction used to make PHBV.
.....[1]

(b)	(i)	Poly(ethene) is an example of a poly(alkene) and can be used in food plastic wrapping.
		This polymer macromolecule has a relative molecular mass of between 15 000 and 20 000.
		Calculate the minimum number of repeating units needed to be present in one macromolecule of poly(ethene).
		[2]
	(ii)	Suggest why people are encouraged to recycle poly(alkenes).
		[1]

(c) Compound **X** can be polymerised to form two different polymers.

Draw a repeat unit for each of the polymer.

repeat unit for polymer 1

[1]

repeat unit for polymer 2

[1]

[Total: 8]

7 Role of water chemistry in aquarium health

Water chemistry plays a critical role in the well-being of fishes in an aquarium. Fish waste releases ammonia, NH₃, and ammonium ions, NH₄⁺, into water, both of which are toxic to fish. NH₃ is highly toxic to fish, whereas NH₄⁺ is significantly less harmful.

Nitrification process

During nitrification, NH₃ and NH₄⁺ are broken down by beneficial bacteria into less toxic nitrate ions, NO₃⁻, as shown in Fig. 7.1.

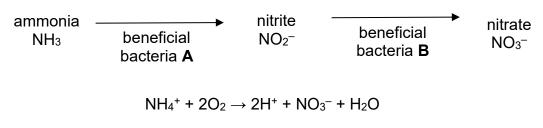


Fig. 7.1

Establishing a new aquarium

Setting up a new aquarium involves establishing colonies of beneficial bacteria in the tank before fish are added. NH₃ and NH₄⁺ are added daily, and the concentrations of different water parameters are monitored.

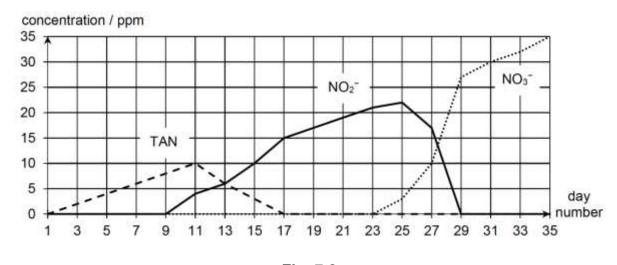


Fig. 7.2

The presence of the respective products in Fig. 7.1 indicates that the beneficial bacteria has been established.

Fish can only be safely added after the concentration of NO_2^- increases then decreases to 0 ppm as NO_2^- is also toxic to fish.

PPM, or parts per million, indicates how many units of a substance are present for every one million units of the total mixture.

Percentage of NH₃ in total ammonia nitrogen (TAN)

The total ammonia nitrogen, TAN, measured is the sum of the concentrations of NH₃ and NH₄+ present.

The percentage of TAN present as NH₃ is affected by the pH of the aquarium water.

Table 7.3 shows the approximate percentage of TAN present as NH₃ at different pH values.

Table 7.3

pH	% of TAN present as NH₃
6.0	0.4
6.5	1.0
7.0	2.5
7.5	6.3
8.0	16.0
8.5	26.0
9.0	39.0

Measuring dissolved oxygen

The recommended range for the concentration of dissolved oxygen in aquarium water samples is 0.000150 to 0.000500 mol/dm³.

Manganese is a transition element. In this experiment, manganese(II) hydroxide, $Mn(OH)_2$, is added to aquarium water. Dissolved oxygen in the water oxidises $Mn(OH)_2$ to $Mn(OH)_3$.

The Mn(OH)₃ then reacts to produce iodine, I_2 . The I_2 is then titrated with thiosulfate ions, $S_2O_3^2$, solution.

It is known that 1 mole of dissolved oxygen produces 4 moles of thiosulfate ions.

(a) Despite nitrification takes place readily under the conditions in an the presence of beneficial bacteria is necessary for any appreciable of NH ₃ or NH ₄ ⁺ to be observed within a short time.							
	Sug	gest the role of beneficial bacteria in the nitrification process.					
		[1]					
(b)	(i)	State the day number that first indicates that beneficial bacteria ${\bf A}$ is established.					
		[1]					
	(ii)	State the day number that is first safe for the addition of fish.					
		[1]					
	(iii)	On day 35, 25% of the aquarium water is replaced with water that is free of NO_3^- .					
		Calculate the new concentration of NO ₃ -, in ppm.					
		[1]					
(c)	The	pH of the aquarium water on Day 11 is measured to be 7.5.					
	(i)	State the value of TAN on Day 11.					
		[1]					
	(ii)	Hence, calculate the concentration of NH₃ present, in ppm, on Day 11.					

(d)	A 100 cm ³ of sample of aquarium water containing dissolved oxygen requires
	13.40 cm ³ of 0.0100 mol/dm ³ thiosulfate solution to reach the titration end point.

Calculate the concentration of dissolved oxygen in this $100\ \text{cm}^3$ sample and hence determine if it falls within the recommended range.

		[3]					
Stat	e one chemical property of manganese.						
		[1]					
A student found iron parts in an aquarium filter starting to rust over t She decides to attach a strip of zinc metal to the iron to prevent rusting.							
(i)	Name the method used to protect the iron.						
		.[1]					
(ii)	Explain why this method is effective, based on the reactivity series.						
		.[1]					
	A st She	A student found iron parts in an aquarium filter starting to rust over tim She decides to attach a strip of zinc metal to the iron to prevent rusting. (i) Name the method used to protect the iron. (ii) Explain why this method is effective, based on the reactivity series.					

[Total: 12]

8	(a)	-	eous nickel(II) sulfate, a green solution, is electrolysed using inert platinum trodes.
			ng electrolysis, the green colour of the solution fades. Bubbles are erved at one of the electrodes.
		Nick	el(II) ions, Ni ²⁺ , are discharged during this process.
		(i)	Write the ionic equation for the reaction that occurs at the electrode where Ni^{2^+} ions are discharged.
			[1]
		(ii)	Identify the gas released during this electrolysis and the electrode where it is formed.
			gas:
			electrode:[1]
		(iii)	Explain why the green colour of the solution fades.
			[1]
	(b)		mple cell is then set up using a nickel strip and a cadmium strip in a beaker queous sodium hydroxide.
		The	reactivity series shows: Cadmium > Nickel > Hydrogen
		(i)	Identify which metal is the negative electrode in this cell. Explain your answer.
			[A]
		410	[1]
		(ii)	State one physical property of nickel and cadmium that make them suitable for use as electrodes in batteries.
			[1]
		(iii)	State the direction of electron flow in the external circuit in terms of the metals used.
			From to [1]

	(IV)	sodium hydroxide electrolyte dries up.	n if the
			[1]
(c)	The	equation below shows a reaction that occurs in some cells:	
		$Mg(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2(g)$	
	Sho	w which substance is oxidised using oxidation states.	
			[1]
		Г	Total: 81

Section B

Answer **one** question from this section.

9 Scientists conducted two experiments to study how different acids and heat affect calcium carbonate.

Experiment 1:

Equal-sized pieces of calcium carbonate were added to aqueous hydrochloric acid, and aqueous ethanoic acid of equal concentration and volume.

(a)	(i)	Write an equation for the reaction of aqueous ethanoic acid with calcium carbonate.
		[1]
	(ii)	Explain why the reaction with hydrochloric acid is faster than with ethanoic acid, even though both acids have the same concentration.
		[2]
	(iii)	The reaction between calcium carbonate and hydrochloric acid is exothermic.
		Explain, in terms of bond breaking and bond forming, why the overall enthalpy change for this reaction is negative.
		[2]
(b)	Ехр	eriment 2:
	A se	parate sample of calcium carbonate was heated strongly in a test tube.
	(i)	Write an equation for the thermal decomposition reaction.
		[1]

	(ii)	•	activity of calcium and co ir respective carbonates.	opper affects the thermal										
				[1]										
(c)	Crus	staceans such as crab	s use calcium carbonate to	o build their shells.										
		en carbon dioxide diss libria are established:	olves in water, it forms ca	rbonic acid. The following										
	Equ	ilibrium 1: CO ₂ (g	$) + H_2O(I) \rightleftharpoons H_2CO_3(aq)$											
	Equ	ilibrium 2: H₂CO:	$_3(aq) \rightleftharpoons 2H^+ + CO_3^{2-}(aq)$											
			, ,											
		Table 9.1												
	а	mount of dissolved CO ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
		low	1.0 x 10 ^{−6}	2.0 x 10 ^{−3}										
		high	1.0 x 10 ^{−5}	0.5 x 10 ⁻³										
	(i)	Using the information in Table 9.1, suggest why an increase in dissolved carbon dioxide makes it more difficult for crustaceans to form their shells.												
				[1]										
	(ii)		inge you would expect whith high dissolved carbon o	nen Universal Indicator is dioxide.										
				[1]										
	(iii)	A student is given a carbonate ions.	seawater sample and war	nts to find out if it contains										
		Describe a chemica presence of carbona	I test the student could te ions.	carry out to confirm the										
				[1]										

[Total: 10]

10 Scientists investigated the chemical behaviour and thermal stability of different carbonates.

(a) Experiment 1:

Samples of sodium carbonate and magnesium carbonate were each added to separate beakers containing equal volumes and concentrations of nitric acid. The rate of gas formation was recorded, and pH measurements were taken before and after excess acid was added.

(1)	hydrogen ions.
	[1]
(ii)	Sodium carbonate reacts faster than magnesium carbonate.
	Explain this observation in terms of solubility and ions availability.
	[1]
(iii)	The pH of sodium carbonate solution was 11 before nitric acid was added. After excess nitric acid was added, the pH dropped to 3.
	Explain this change in terms of the ions present in the solution and their concentrations.
	[1]
(iv)	Predict and explain the difference in the total volume of gas produced when equal masses of sodium carbonate and magnesium carbonate are used, assuming complete reaction.
	101

(b)	Experiment	2:
-----	------------	----

A student heated magnesium carbonate and copper(II) carbonate separately in test tubes and observed the temperature at which decomposition began.

(i)	Write an equation for the thermal decomposition of magnesium carbonate.
	[1]
(ii)	The gas produced from the thermal decomposition of magnesium carbonate was passed through limewater for a few minutes. A precipitate was initially formed.
	Identify the precipitate and state what happens when the gas is passed through limewater for a longer time.
	[2]
(iii)	The decomposition of magnesium carbonate is an endothermic process.
	Explain, in terms of bond breaking and bond forming, why the overall enthalpy change for this reaction is positive.
	[2]
	[Total: 10]

24
The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
				Key			1 H hydrogen 1						,				2 He helium 4
3	4		proton	ı (atomic) n	umber	'		1				5	6	7	8	9	10
Li	Ве		ate	omic syml	ool							В	С	N	0	F	Ne
lithium	beryllium			name .								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		relati	ive atomic	mass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na sodium	Mg											Al	Si silicon	P	S sulfur	C1	Ar
23	magnesium 24	3	4	5	6	7	8	9	10	11	12	aluminium 27	28	phosphorus 31	32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium —	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids		Ta	W	Re	Os	Ir	Pt	Au	Hg	T <i>l</i>	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	· –	_	_
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F <i>l</i>		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	_	copernicium		flerovium		livermorium		
_	_		_	_	_	_	_	_	_	_	_		_		_		
	ſ																
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lantha	anoids	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	95 Np	94 Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
actin	oids	actinium	thorium	protactinium	uranium	neptunium	r u plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	LI lawrencium	
5.5411		_	232	231	238	_	_	_	-	_	_	-	_	_	_	-	
The volu	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.n.)																

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$